摘要
命名实体识别是自然语言处理的基础任务之一,目的是从非结构化的文本中识别出所需的实体及类型,其识别的结果可用于实体关系抽取、知识图谱构建等众多实际应用。近些年,随着深度学习在自然语言处理领域的广泛应用,各种基于深度学习的命名实体识别方法均取得了较好的效果,其性能全面超越传统的基于人工特征的方法。该文从三个方面介绍近期基于深度学习的命名实体识别方法:第一,从输入层、编码层和解码层出发,介绍命名实体识别的一般框架;第二,分析汉语命名实体识别的特点,着重介绍各种融合字词信息的模型;第三,介绍低资源的命名实体识别,主要包括跨语言迁移方法、跨领域迁移方法、跨任务迁移方法和集成自动标注语料的方法等。最后,总结相关工作,并提出未来可能的研究方向。
- 单位