摘要

电站气体浓度测量对实现燃烧优化、提高燃烧效率和火焰品质、减少污染物排放具有重要意义。以CO2气体为例进行研究,基于近红外波段可调谐激光吸收层析成像技术,提出了基于径向基(radial basis function,RBF)神经网络的高温气体CO2浓度测量方法。通过实验获取不同浓度下的CO2吸收可调谐激光光谱信号,计算CO2吸收谱线和原始信号的差值,提取出描述该差异性的统计特征参数作为RBF神经网络的输入,CO2浓度作为RBF神经网络的输出,建立了基于RBF神经网络的高温气体CO2浓度测量仿真模型,通过仿真实例验证了该方法的有效性和正确性。与GRNN神经网络对比分析表明:RBF神经网络法可以有效提高CO2浓度测量精度,为生物质发电高温气体计量提供理论依据。