摘要

传统的火焰识别方法依赖于提取火焰的物理特征,存在精确度差、应用范围窄等问题。通过对比已有的线性网络、谷歌网络和残差网络的性能,确定残差网络的误差最小,准确度最高,并选取残差网络构建火焰特征识别网络DarkNet53。自行构建数据集,并将干扰对象设置为灯光、太阳和火焰图标,将三者与火焰图像一起构成数据集。基于YOLO v3算法在上述干扰环境下对火焰进行识别和网路性能测试。结果表明,基于深度学习的火焰识别方法能够准确区分火焰和类似火焰的干扰因素,实现了在多干扰环境下对火焰的准确有效识别。仅使用普通的广角摄像机就可以对开阔空间中的火焰进行准确识别,降低了应用成本,此外,该方法还适用于多种场景,提高了方法的适用范围。

全文