摘要

经典的逆合成孔径雷达(ISAR)稀疏成像算法一般通过求解?1范数约束的最小化问题获取稀疏恢复结果,但此类算法在恢复过程中很容易将某些散射强度较低的分辨单元当作背景噪声一并消除,从而导致目标部分弱散射结构特征丢失。针对这一问题,该文提出一种基于稳健型双层叠组LASSO回归模型的交替方向多乘子算法(RTGL-ADMM)。该算法在ISAR目标稀疏先验的基础上,进一步引入目标散射体空间连续性结构特征先验知识,并应用?1=?F混合范数进行定量表征。接下来,在ADMM框架下引入非平滑的?1=?F混合范数惩罚项,并将距离向和方位向雷达回波复数据分别进行分组处理后再使其双层叠加,然后对混合范数对应的邻近算子进行对偶迭代运算,实现"分解-协同"框架下结构与组稀疏特征的有机调和,从而在对ISAR数据稀疏成像的同时实现结构特征增强。实验验证采用ISAR仿真复数据与Yak-42实测数据,针对RTGL-ADMM成像进行定性分析。继而采用相变曲线图定量分析RTGL-ADMM在不同参数调节下的成像能力,从而验证了该文所提算法应用于ISAR高分辨成像时的稳健性与优越性。

  • 单位
    中国工程物理研究院电子工程研究所