摘要

首先,对核相关滤波(KCF)目标跟踪算法进行了详细推导;然后,针对KCF算法提取单一特征,不能很好地表达目标的外观模型,提出将多种特征融合的方法,增加外观模型的可区分性.同时针对KCF算法不能自适应尺度变化的问题,引入一种尺度自适应变化方法.还对于KCF算法的固定更新率在目标被遮挡的情况下会学习到错误信息的问题,提出一种在线模型更新因子的方法;最后,通过实验对比结果表明,本文提出的算法跟踪精度更高,且对目标尺度发生较大变化和遮挡情况下的跟踪具有较强的鲁棒性.

  • 单位
    四川大学锦城学院