摘要

针对单一特征参数表征语音信息不够全面的缺点,利用时域特征参数和频域不同特征参数的优点,融合频域特征参数MFCC、GFCC、MFCC一阶差分、GFCC一阶差分和时域特征参数短时能量,然后将多维度的融合特征参数进行主成分分析降维。降维后的特征参数送入双向长短时记忆神经网络模型进行识别训练。仿真实验表明,本文目标参数参与训练的说话人识别模型取得了99.61%的识别正确率,较其他说话人识别模型的识别率更高。