卷积神经网络(CNN)具有权值数量少,训练速度快等优点,在图像识别、机器视觉等领域得到广泛应用。本文提出了一种卷积神经网络的自适应加权池化算法,算法通过生成合并通道,并在学习掩模的引导下汇集特征,优化了子采样模型的特征提取,有效改善了网络的识别准确性和快速性。利用该算法对磁片表面缺陷进行检测实验,实验结果表明,本文提出的池化模型使卷积神经网络对特征的提取更加精确,同时提高了收敛速度和鲁棒性,并且可以应用于各种深度神经网络体系结构中。