针对传统面向对象分类方法的不足,根据研究对象特征构建了一种改进的面向对象的高分辨率遥感影像信息提取分类方法。首先利用SLIC超像素算法对影像进行分割,并提取分割后影像的纹理、光谱和形状特征;再利用SVM分类器提取影像信息,区分相似性较高的耕地和道路;然后利用随机森林算法提取水体和人工表面;最后对不同地物信息的提取结果进行拼接,实现土地利用分类。结果表明,与传统的面向对象分类方法相比,该方法的分类精度更高。