深度学习的发展,促使神经网络在现实各个领域得到广泛应用。神经网络可解释性的缺乏是的其在安全性、可靠性要求较高的行业没有得到实质性应用。可视化方法立足对神经网络结构、特征的诠释,是一种很好的神经网络解释性方法。依据神经网络结构、训练阶段,归纳可视化方法为:特征可视化、关系可视化和过程可视化。最后利用Grad-CAM方法举例了特征可视化,描述了其工作原理。