摘要
语音线性预测分析算法在噪声环境下性能会急剧恶化,针对这一问题,提出一种改进的噪声鲁棒稀疏线性预测算法。首先采用学生t分布对具有稀疏性的语音线性预测残差建模,并显式考虑加性噪声的影响以提高模型鲁棒性,从而构建完整的概率模型。然后采用变分贝叶斯方法推导模型参数的近似后验分布,最终实现噪声鲁棒的稀疏线性预测参数估计。实验结果表明,与传统算法以及近几年提出的基于l1范数优化的稀疏线性预测算法相比,该算法在多项指标上具有优势,对环境噪声具有更好的鲁棒性,并且谱失真度更小,因而能够有效提高噪声环境下的语音质量。
-
单位解放军理工大学