摘要
针对现有的图像分割技术在小样本量数据集上容易过拟合,不能有效分割缺损图像的问题,提出了一种自约束图像分割方法。首先,基于传统无监督水平集图像分割方法,提出一种可微分水平集层。第二,将可微分水平集层嵌入U-Net等有监督图像分割模型中,使得水平集方法对函数的拓扑约束,可以随着梯度反向传播过程,对卷积参数起到约束作用。实验结果表明,在MNIST和Fashion-MNIST简单数据集上,本文方法的分割准确率比CV等基于水平集的方法分别提升8.3%和11.7%,比U-Net等分割网络分别提升7.5%和15.6%;在背景复杂的Weizmann horse数据集上准确率较基于水平集的方法提高54.9%,较U-Net等分割网络提升13.4%,显示出本文方法在小样本缺损图像数据集上的有效性与鲁棒性。
- 单位