摘要

针对传统机器视觉算法难以获取准确视觉引导线的问题,该研究提出了一种利用深度学习算法获取视觉引导线的方法,并将毫米波雷达探测的目标运动状态信息考虑到视觉引导线的提取中,以安全避开障碍物。首先通过数据预处理方法过滤部分雷达目标数据,再利用多目标跟踪算法过滤干扰数据并对动态目标持续跟踪,为后续数据融合提供准确的雷达目标数据。然后制作田间道路环境数据集,搭建基于Deeplabv3 plus的改进语义分割网络。继而利用时间戳对齐和基于最小二乘法的坐标变换实现毫米波雷达数据与视觉数据在时间与空间维度的同步。最后基于无动态目标状态信息和有动态目标状态信息两种情况提出了相应的视觉引导线提取策略,进行相关试验测试了视觉引导线提取方法的效果。相比于人工测量的真实道路中点,在无动态目标场景下提取的视觉引导线的平均误差为1.60~9.20像素;而在有动态目标的场景下,能够成功获取避障的视觉引导线。研究结果有助于提升丘陵山区农业机械的智能化水平。