摘要

针对自密实清水混凝土试验周期长、表观性能影响因素多等问题,应用BP神经网络对其性能预测,有效减少试验量,快速找出外加剂最优掺量。基于BP神经网络卓越的非线性处理功能,将减水剂、消泡剂、引气剂、坍落度作为输入变量,自密实清水混凝土的7 d抗压强度、扩展度、气孔面积、色差作为输出变量,建立含有2层隐含层的BP神经网络模型,利用试验所得12组数据,预测自密实清水混凝土的性能,将预测值与试验值进行比较,确保模型高精确度。结果表明:神经网络模型预测结果良好,强度预测的相对误差最高达到10.8%,其余均在10%以下,其中第11组的混凝土性能最优,预测与实际结果相吻合。

  • 单位
    土木工程学院; 贵州大学; 中铁十七局集团有限公司