摘要

以淮南矿区谢桥矿和潘二矿的煤和岩石样本为研究对象,通过地物光谱仪采集样本反射率光谱曲线,同时检测样本氧化物含量、水分、灰分及挥发分含量,将样本的反射率光谱曲线和样本成分含量分别作为自变量,样本类别“煤”和“岩石”两种矿物类型作为因变量,建立煤和岩石识别模型对煤和岩石进行二分类。该研究主要采用三种模型,分别为主成分分析结合支持向量机(PCA-SVM)、主成分分析结合BP神经网络(PCA-BP)模型和核主成分分析结合支持向量机(KPCA-SVM)模型。结果表明,基于可见光近红外光谱的三个模型中,核主成分分析结合支持向量机模型的识别精度最高,建模平均精度为95.5%,验证平均精度约为90.56%;基于样本成分的三个模型中,核主成分分析结合支持向量机模型的识别精度最高,建模平均精度为98.5%,验证平均精度约为95%。