为解决数据分布式存储下实现较高精度和安全性的个性化推荐,提出了一种全新的分布式半监督推荐系统框架。尝试将半监督学习方法中的协同训练(Co-training)与基于深度学习的深度协同过滤模型结合为Co-NCF模型,并使用基于consensus算法的分布式梯度下降法来训练Co-NCF模型,以此构建了Co-NCF模型的分布式版本。该模型在MovieLens数据集上的测试中,表现显著强于现有的分布式NCF模型。