摘要

【目的】为解决地铁运行时因列车门噪声过大而导致故障诊断难的问题,以列车门为研究对象,提出一种基于改进麻雀搜索(SSA)算法的变分模态分解(VMD)振动信号降噪法,并通过支持向量机来对故障进行诊断。【方法】首先,利用Hénon混沌映射来初始化种群,将非线性权重因子引入群体行为阶段,并通过Levy飞行策略及柯西变异对位置进行更新。其次,通过改进的麻雀搜索算法对变分模态分解算法中的惩罚因子α和模态分解数K进行全局寻优,确定参数分解并重构,得到降噪信号。最后,使用主成分分析法(PCA)来提取特征,并利用支持向量机(SVM)来诊断故障。【结果】试验结果表明,该方法对振动信号的降噪效果明显,故障诊断准确率达91%,验证了该方法的有效性。【结论】该方法能有效克服传统VMD去噪参数难以选取的问题,对列车门故障诊断研究具有一定的参考价值。

全文