摘要

传统雷达多次回波分类方法容易受到目标类型和幅度起伏特性等因素的影响,其泛化性和准确性难以满足雷达装备实际需求。针对该问题,提出了一种采用集成装袋树的雷达多次回波分类方法。该方法首先对雷达多脉冲回波数据进行幅度对数变换和相邻脉冲幅度补齐预处理操作,然后利用决策树算法从标注的训练数据中学习雷达多次回波在脉冲维的幅度起伏特征,最后通过多个分类器的集成实现对雷达多次回波的准确分类。实测雷达数据验证结果表明,所提方法分类准确率达到了95.9%,可有效提升雷达多次回波的分类性能,并且不依赖于经验门限的特性,增强了其泛化能力。