摘要
随着社会经济的飞速发展,能源短缺问题在世界范围内日益突显。目前,开发利用可再生能源已被我国列为能源发展的优先领域。藻类植物蕴含丰富的生物质能,同时又具有光合效率高、固碳能力强、生长速度快、来源分布广等优势,是公认的可持续绿色清洁能源的发展方向。甘氨酸是藻类水热液化过程中的重要过程反应物,其液化过程中的热动力学性质是认识和优化藻类水热液化技术的基础要素,通过研究甘氨酸水热液化过程可为分析复杂的生物质水热液化反应奠定基础。研究基于熔融石英毛细管反应器(FSCR)高温高压可视反应腔,结合Linkam FTIR600控温台与Andor激光拉曼光谱仪联用,对甘氨酸水溶液在270~290℃(压力同于实验环境温度下水饱和蒸气压)条件下的液化过程运用拉曼光谱分析技术开展了原位研究。通过观测5 Wt%甘氨酸溶液中C—C伸缩振动峰(897 cm-1)、 C—N伸缩振动峰(1 031 cm-1)和COO-反对称伸缩峰(1 413 cm-1)在液化过程中的相对拉曼强度变化,深入分析了温度及反应时间对甘氨酸溶液各官能团热分解的影响。运用Avrami的反应动力学模型分析,获取了量化温度对甘氨酸分子中骨架碳链ν(C—C)的特征振动模式热解过程影响的活化能,357 kJ·mol-1,和不同实验温度下的反应速率常数k等一系列相关参数,定量地揭示了甘氨酸液化过程的热动力学性质。实验中发现,在设定相同的液化反应时间(10 min)内,当温度低于290℃时,降温后反应腔内能观测到甘氨酸水溶液中ν(C—C),ν(C—N),νas(COO-)的特征峰,而温度高于290℃时则不然,表明甘氨酸的完全液化温度约为290℃。该研究运用高温高压可视化实验技术,结合原位拉曼光谱分析技术,厘清了甘氨酸水热液化过程中的不同温度下特征官能团拉曼峰强的变化规律,为深入了解藻类水热液化过程机理、推进生物质能的开发利用提供必要的实验依据,具有重要的科学意义和现实意义。
- 单位