基于改进遗传算法的变电站巡检机器人路径规划

作者:柯清派; 史训涛; 袁智勇; 雷金勇; 刘迎澍; 任超
来源:电测与仪表, 2023, 60(08): 144-156.
DOI:10.19753/j.issn1001-1390.2023.08.024

摘要

变电站巡检机器人的路径规划是一个复杂的组合优化问题。与经典的TSP问题不同,变电站巡检线路中各坐标之间并不具备完全的连通性,传统的优化方法难以解决此类问题。为此,文中提出一种改进遗传算法用于巡检路径规划,采用拓扑图对机器人工作环境进行建模,然后采用特殊的交叉算子、自适应变异算子和淘汰算子,对每一代被淘汰的个体进行逆转变异并将产生的新个体重新加入种群,随迭代次数调整变异概率,从而对连续的规划空间直接进行寻优。仿真结果表明,该算法在巡检机器人路径规划中与模拟退火算法、传统遗传算法和基于个体相似度改进的自适应遗传算法(ISAGA)相比,得到的路径平均长度分别缩短了4.9%、8.3%和3.1%,并且具有更好的收敛性和稳定性,在实际的巡检任务中能够起到更好的效果。

全文