摘要

该文从改进事件演化图构造和丰富事件表示的角度出发,提出了一种基于事件演化图和图卷积网络的事件预测模型。该模型采用事件抽取模型,结合频率和互信息重新定义事件演化图中边的权重。事件语境的表示由BiLSTM和记忆网络学习得到,并在事件演化图的指导下作为输入被馈送到GCN。最终的事件预测由这种事件关系感知、上下文感知和邻域感知的事件嵌入共同完成。在Gigaword基准数据集上的实验结果表明,所提出的模型在事件预测精度方面优于六个先进的模型,与其中最新的SGNN方法相比提高了5.55%。