摘要
针对变化环境下月径流序列的非平稳性日益加剧,传统径流预报模型采用普通学习算法的局限性,基于Bagging和Boosting集成学习算法,构建了随机森林(RF)、梯度提升决策树(GBDT)和轻梯度提升机(LightGBM)3种集成学习模型,融合弹性网(EN)和变分模态分解(VMD),建立VMD-EN-RF、VMD-EN-GBDT和VMD-EN-LightGBM非平稳月径流组合预报模型,并以黄河流域实测月径流为研究对象,评估预报结果的不确定性。结果表明:单一集成学习模型能够提供可靠的预报结果,适用于非平稳月径流预报;融合VMD和EN的集成学习模型预报性能较单一集成学习模型有了显著提高,纳什效率系数提升了15%~20%,均方根误差降低了30%~40%;基于Boosting集成方法构建的集成学习模型优于Bagging集成方法,其中VMD-EN-LightGBM预见期3月内的预报效果优于VMD-EN-RF和VMD-EN-GBDT,在90%置信度的区间预报覆盖率高于90%,表现出良好的性能。
-
单位西北农林科技大学; 建筑工程学院