针对高光谱遥感图像的分类问题,本文引入极限学习的思想,提出了基于分层局部感受野的极限学习机的高光谱分类方法。该方法利用光谱特征的局部相关性,采用两层的分层结构提取高光谱图像中的抽象表示和不变特征,可以取得更好的分类性能。同时还分析了算法的不同参数对分类性能的影响。在两个广泛使用的真实高光谱数据集上进行实验,同当前一些典型的方法做比较,结果表明该方法具有更高的分类性能与较快的训练速度。