摘要
非侵入式负荷分解的本质是根据已知的总功率信号分解出单一的负荷设备的功率信号.目前基于深度学习模型大多存在网络模型负荷特征提取不充分、分解精度低、对使用频率较低的负荷设备分解误差大等问题.本文提出一种注意力时序网络模型(Attention Recurrent Neural Network, ARNN)实现非侵入式负荷分解,它将回归网络与分类网络相结合来解决非侵入式负荷分解问题.该模型通过RNN网络实现对序列信号特征的提取,同时利用注意力机制定位输入序列中重要信息的位置,提高神经网络的表征能力.在公开数据集Wiki-Energy以及UK-DALE上进行的对比实验结果表明,本文提出的深度神经网络在所有考虑的实验条件下都是最优的.另外,通过注意力机制和辅助分类网络能够正确检测设备的开启或关闭,并定位高功耗的信号部分,提高了负荷分解的准确性.
- 单位