摘要

针对粒子群算法在处理多峰复杂问题时,收敛速度慢且容易陷入局部最优的缺点,提出一种高斯反向学习粒子群优化算法(GOL-PSO).针对历史最优粒子间无法相互交流,增加一种高斯反向学习机制来提高粒子的学习能力,进而提高算法的搜索能力,另外算法在更新公式中引入"历史最优平均值"因子来提高算法的收敛速度.经过在8个测试函数的仿真实验中,与一些改进的粒子群算法进行比较,GOL-PSO有5个测试函数的测试效果最好,且T检验结果表明算法结果有明显提高,同时算法收敛对比分析结果表明,本文算法具有良好的全局搜索能力和较快的收敛速度.

  • 单位
    解放军理工大学