摘要
MIL-88A(Fe)@sponge(MS) was synthesized by a dip-coating method, which displayed efficient photocatalytic Cr(Ⅵ) reduction efficiency under both low power LED UV light and real solar light irradiation. It was observed that MS(0.2 g/L) could remove 100% Cr(Ⅵ)(10 mg/L) by adding 0.4 mmol/L tartaric acid(TA) without adjusting pH(pH 5.05) within 6.0 min and 3.0 min under UV light and real solar light irradiation, respectively. Besides, the photo-induced e-and radicals(O2·- and CO2·-) were found to play the momentous roles in the MS/TA/UVL/Cr(Ⅵ) system by the scavenger experiments and electron spin resonance(ESR) tests. MS was also filled into a fixed-bed reactor to test the possibility of long-term Cr(Ⅵ)reduction operation in TA/UVL system. As expected, the results revealed that MS could still maintain 100% activity up to 60 h. These results demonstrated that MIL-88A(Fe) might be the potentially efficient catalyst for large-scale wastewater treatment in the near future.
- 单位