摘要

径流预报的精度直接关系到流域水资源优化配置与综合利用的效益最大化.针对径流序列非线性、非平稳、直接预测精度低的特点,首次利用具有自适应性特点的极点对称模态分解(Extreme-point Symmetric Mode Decomposition,ESMD)方法对径流序列平稳化处理,结合可逼近任何非线性映射的误差反向传播网络(Back Propagation Neural Network,BP神经网络),建立ESMD-BP神经网络组合预报模型,并将其应用于黄河上游龙羊峡水库入库站唐乃亥站月径流和旬径流预报.首先,利用ESMD方法将径流序列中不同尺度的分量和趋势分量逐级提取出来,甄别了大尺度循环和...

全文