摘要

针对旋转机械故障特征需要人工提取导致故障识别困难的问题,在传统卷积自编码网络基础上,提出一种一维多尺度卷积自编码的故障诊断模型.该模型首先使用并行、不同尺度的卷积核和反卷积核对输入信号进行特征提取和重构,然后将多尺度卷积核所提取到的特征图作为分类器的输入,最后用带标签的数据对全模型的参数进行微调.通过一组模拟故障信号数据和2组滚动轴承故障实验数据对一维多尺度卷积自编码模型进行验证,结果显示该模型可分别达到99.75%、99.3%和100%的诊断精度.此外,将一维多尺度卷积自编码模型与传统机器学习、卷积神经网络和卷积自编码网络进行诊断精度和重构误差的比较,最终结果表明所提出模型对于滚动轴承故障数据有更好的识别效果.