摘要
针对鸭蛋裂纹人工检测受主观性影响造成精度波动大等问题,利用ResNet34网络模型,提出1种基于梅尔谱图的鸭蛋裂纹识别算法。首先利用敲蛋装置收集敲蛋声音数据,再将音频转化成梅尔谱图,构建梅尔谱图数据集,然后搭建ResNet34模型,引入迁移学习机制训练模型,再通过Adam优化算法更新梯度,增加注意力机制模块并将卷积结构替换为深度可分离卷积以对网络模型进行改进,并调整参数进行优化,最后利用模型对鸭蛋裂纹进行识别。结果显示:改进的ResNet34DP_CA网络模型检测的平均准确率为92.4%,对比原始ResNet34网络模型,平均准确率提高5.5个百分点,参数量减少32%;对比其他网络模型VGG16、MobileNetv2和EfficientNet,平均准确率分别提高10.9、13.7、16.3个百分点,识别时间为21.5 ms。结果表明,所提出的基于梅尔谱图和改进ResNet34模型的鸭蛋裂纹识别算法,能够有效地对鸭蛋裂纹进行检测识别。
- 单位