摘要
随着信息技术的飞速发展以及网民规模的扩大,互联网数据量与日俱增,其中含有大量非结构化文本数据,因此,文中分类已成为当前的研究热点。特征选择的好坏直接影响文本分类的精度。传统单一的特征选择方法侧重点不同,使用不同的特征选择方法选择后的特征子集可能差别较大,进而导致不稳定的分类结果。文中提出了一种混合CHI与IG的特征选择方法,引入了融合特征的指标SOM(Score of Mixed),将特征根据SOM值排序,通过预定的阈值进行特征筛选,得出相对稳定且具代表性的特征子集。实验结果表明,使用该方法进行特征选择,文本分类的效果相比使用其他特征选择方法有一定的提升。
- 单位