摘要

为提高多接入边缘计算(MEC)任务卸载效率,提出了一个任务卸载和异构资源调度的联合优化模型.考虑异构的通信资源和计算资源,联合最小化用户的设备能耗、任务执行时延和付费,并利用深度强化学习(DRL)算法对该模型求最优的任务卸载算法.仿真结果表明,该优化算法比银行家算法的设备能耗、时延和付费的综合指标提升了27. 6%.