摘要

为了提高风速的多步预测水平,提出了一种基于数据信号分解和灰狼算法优化极限学习机的混合预测模型。首先,使用具有自适应噪声的完全集成经验模态分解算法将原始风速时间序列分解为若干本征模态函数和一个残差序列,并使用偏自相关函数法对模型输入进行特征选择;其次,在分解子序列上分别建立模型并进行预测,构造多输入多输出策略的极限学习机神经网络,使用灰狼优化算法求解其中的最优化隐含层权值和偏置;最后,对子序列进行重构并得到最终的预测结果。使用时间分辨率为15 min的多组实测资料开展模拟实验,所提模型在3个风电场的均方根误差分别为0.859、0.925和0.927,均低于其他对比模型,验证了该模型在未来4 h风速预测(即16步预测)中的有效性。

全文