基于MHPSO优化GRU神经网络的短时交通流预测

作者:王德广; 黄浩洋
来源:大连交通大学学报, 2020, 41(01): 12-17.
DOI:10.13291/j.cnki.djdxac.2020.01.003

摘要

为提高短时交通流量预测精度及预测效率,首先提出一种PSO改进算法(MHPSO),把PSO种群结构设置为多层,将种群中上层粒子作为下层粒子的吸引粒子,将吸引粒子对粒子本身的吸引能力考虑在内,修改粒子速度更新方程以增强种群粒子之间的交互能力,从而有效地避免其陷入局部最优,提升算法的寻优速度及精度;然后利用MHPSO对GRU神经网络的参数进行优化;最后利用基于MHPSO优化的GRU神经网络构建短期交通流预测模型.实验结果表明:基于MHPSO优化的GRU神经网络模型在短时交通流预测中具有更高的预测精度,预测效率得到显著提升.