讨论了涉及复合函数分担条件的全纯函数正规族,提出了"局部度"的概念,利用Pang-Zalcman方法和Nevanlinna理论证明了:对于区域D上的全纯函数族!,若P(z)是次数为n的多项式,φ(z)是局部度小于n的解析函数,且对任意f,g∈F,满足P(f)和P(g)在D上IM分担φ(z),则!是D上的正规族.并举例说明了该结论中局部度条件不能减弱,在特定意义下是最优的.