摘要

为了提高油价的预测效果,提出一种基于EEMD分解、小波阈值去噪、fine-to-coarse法重构和LSTM神经网络的组合预测方法。EEMD对油价原始时间序列分解,利用小波阈值去噪法获取第一高频模态分量的有效信息;分解出的模态分量运用fine-to-coarse法重构,得到从高到低的重构分量;使用LSTM神经网络预测重构分量;对重构序列简单加和得到最终结果。实证结果表明,与其他基准模型比较,在水平预测和趋势预测上该方法能有效地预测原油价格。