摘要
为了解决高比例不确定性风电接入电力系统带来强烈调频需求的问题,提出了基于混合深度学习模型的风电功率预测及其一次调频应用方法。首先,采用孤立森林(Isolated Forest, IF)对历史数据进行异常值处理,提高数据质量,其次,构建卷积神经网络(Convolutional Neural Network, CNN)、双向长短期记忆(Bidirectional Long Short Term Memory, BiLSTM)和注意力机制(Attention Mechanism, AM)的混合深度学习模型对风电功率进行预测。最后,依据功率预测精度配置超级电容器储能,设计储能调频控制原则,弥补风电机组自身预测误差,并协同风电机组参与电力系统一次调频。基于预测结果为4台风电发电机组2个负荷区域仿真系统配置超级电容器储能系统,利用digsilent平台进行了风预测误差和负荷波动下的一次调频仿真。结果表明:所提IF-CNN-BiLSTM-AM模型比BP和LSTM基准模型预测误差(MSE)降低了81.53%和51.44%,具有最优的预测性能;设计的风储一次调频模型与原则可有效应对风电预测误差和负荷波动带来的一次调频问题。
-
单位河北省电力公司电力科学研究院