摘要

以黄瓜叶部病害作为研究对象,基于可见光谱反射率差异识别黄瓜叶部病害,研究基于SVM的黄瓜叶部病害识别预测模型。采用小波变换进行数据预处理;选取Otsu、边缘分割法和K均值聚类三类分割方法进行病斑分割,比较错分率和运行时间,K均值聚类方法更适合黄瓜叶部病斑分割;提取纹理、颜色和形状特征参数,共15个特征参数;通过交叉验证选择最优参数c和g,对核函数参数进行优化处理,并通过比较线性核、多项式核、 RBF核等不同核函数情况下SVM的正确识别率,确定RBF核SVM模式识别方法能够更精准地识别黄瓜叶部病害。并将基于SVM与另外两种常见的黄瓜叶部病害识别方法, BP神经网络和模糊聚类进行比较,结果表明,基于SVM的识别模型对霜霉病的正确识别率为95%,白粉病和褐斑病的正确识别率均为90%,平均诊断正确率为92%;该模式识别方法识别效果最佳,运行时间最短,为基于可见光谱的黄瓜病害识别模型提供参考。

  • 单位
    农业部; 中国农业大学