针对传统BP神经网络在检测速度、精度、复杂度等方面的缺陷,提出了一种基于深度信念网(deep beliefnets,DBN)的网络入侵检测算法,将数据通过双层RBM结构降维,再用BP神经网络反向微调结构参数,从而简化了数据复杂度,减少了BP神经网络的计算量.通过对KDD99数据集仿真实验表明,该算法对于大数据拟合快,检测精度较高.