针对神经网络等模型在时间、荷载等综合因素影响下预测精度不高的问题,提出将模糊聚类循环迭代模型应用于沉降预报,根据前期经验数据对后期沉降趋势进行模拟,引用平均相对误差、均方根误差分别衡量总体精度和偏差;经验证模型精度优于BP神经网络和支持向量机等3种方法。结果表明:基于模糊聚类循环迭代模型适用于多因素影响下的煤仓沉降预测,新沉降预测模型应用也将为工程设计应用提供更多参考。