摘要
K近邻(K nearest neighbor,KNN)分类器是一种经典的分类器,它简单而又有效,已经在人工智能与机器学习领域得到了广泛的应用.针对传统分类器难以处理不确定性数据的问题,研究样本单特征邻域粒化技术,构造粒的向量形式,提出一种基于粒向量的K近邻分类方法.该方法引入邻域粗糙集模型,对分类系统中的样本进行单特征邻域粒化,形成特征邻域粒子.并由多个特征邻域粒子构成一个粒向量,定义了多种粒向量运算算子,提出了2种粒向量距离:相对粒距离与绝对粒距离,证明了粒向量距离的单调性原理.进一步,基于粒向量距离定义了K近邻粒向量概念,提出了K近邻粒分类器.最后,结合UCI数据集,采用K近邻粒分类器与经典K近邻分类器进行比较测试.理论分析和实验表明:针对合适的粒化参数与k值,K近邻粒分类器具有较好的分类性能.
- 单位