通过构造两个特殊的矩阵,给出非负矩阵最大特征值的上下界估计式,且这些估计式只和非负矩阵的元素有关,计算方便.同时对非负矩阵最大特征值下界估计式的单调递增性和上界估计式的单调递减性进行了证明.在此基础上,利用单调有界准则证明了上下界估计式极限的存在性.最后将所得结果与经典的Frobenius界值进行比较,数值算例表明估计的有效性和精确性.