应用粒子群优化(PSO)和最小二乘支持向量机(LS-SVM)算法对各历史覆冰过程建立预测模型,利用皮尔逊相关系数法对历史覆冰过程进行相似性筛选,采用径向基神经网络(RBF)建立多历史覆冰过程的覆冰增长率预测模型.实例计算表明,与传统的单历史覆冰过程预测方法相比,基于多历史覆冰过程的输电线路覆冰增长预测具有更好的精度.