摘要
为了实时准确地预测交通流量,本文采用一种改进的粒子群算法对径向基函数(radical basis function,RBF)神经网络进行优化,RBF神经网络隐层中心向量由最近邻聚类确定,使用适度值择优的原理对离子群算法进行改进,将改进的粒子群算法用于最近邻聚类半径的优化,合理确定了粒子群的隐层结构。同时,运用Matlab仿真软件建立新的RBF模型,并对交通流进行预测和分析。仿真结果表明,粒子群优化RBF的相对平均误差为3.94,改进粒子群优化RBF相对平均误差为2.67,通过误差对比,改进的RBF神经网络算法具有更好的预测效果,在预测速度和精度上均优于粒子群优化RBF神经网络交通流预测算法。该研究应用前景广阔。
- 单位