摘要

为提高样品代表性,构建近红外光谱的理想校正模型,实现对奶牛场粪水氮磷含量的速测,本研究基于粪水运移过程代表性暴露位点的原始样品,按照不同比例进行样品复配,填补现场不易采集到的“黑箱”位点样品,运用偏最小二乘法构建了基于最优光谱预处理方法的原样模型、复配模型和融合模型。结果表明:相比原始样品,原样+复配样品总氮、总磷的变异系数分别降低了0.103、0.107,提升了浓度分布均匀性,丰富了粪水光谱信息。相比原样模型,融合模型总氮和总磷的决定系数(Rpred2)分别提升了0.049和0.061,相对分析误差(RPD)分别提升了1.547和0.176。相比复配模型,融合模型总氮和总磷的Rpred2分别提升了0.026和0.022,RPD分别提升了0.470和0.052。验证结果表明,总氮和总磷模型的Rpred2分别为0.903和0.878、RPD分别为2.916和2.508。研究表明,样品复配的方法可有效提高校正集样品的代表性,提升模型预测性能,为还田前粪水养分的快速定量提供技术支撑。