摘要

多目标跟踪算法是实现无人机自主导航的关键技术,为解决现有方法存在的小目标检测能力弱、计算能耗大、鲁棒性差等问题,提出一种基于注意力机制和特征匹配的多目标空对地跟踪算法,以实现航拍视角下对目标的精准高效跟踪。首先,引入通道可分离卷积,实现目标检测模型的轻量化;其次,构造融合空间注意力机制的小目标检测分支,提高对小微目标的检测精度,最后,优化目标跟踪算法的外观重识别网络,提高多目标跟踪效率。使用Visdrone2019-MOT数据集对所提算法进行验证,实验结果表明,所提算法的MOTA值提高了0.6%,FPS值为21.31帧/s,在模型大小和跟踪精度上实现了较好的平衡。

全文