摘要

该文提出了一种基于多尺度自回归模型和马尔科夫随机场的SAR图像分割算法。算法引入多尺度自回归模型,建立层与层之间以及相邻层的像素点之间的数学关系,并将此模型与马尔科夫分割算法结合,实现了更为合理的多尺度分割策略。通过相邻尺度的依赖关系及同一尺度空间的马尔可夫性,使用多尺度自回归模型的预测结果来引导精细尺度图像分割,不仅使得最细尺度下的分割迭代次数减少;而且去除了最细尺度下多余的误分类斑块;同时还能够分割出清晰、平滑的目标边界,实现了较满意的SAR图像分割。