摘要

为了克服传统电机故障检测方法的准确率低、测量过程为侵入式、严重依赖先验知识的缺点,提出了一种基于卷积神经网络的非侵入式电机故障检测方法。通过将电机与其他设备共同工作时的总电源信号作为检测样本,实现检测过程的非侵入式,并基于残差优化卷积网络结构进行神经网络训练,最终实现电机超载、单相短路及相间短路故障的非侵入式检测与分类。结果表明,本文提出的方法可以使故障识别准确率达到96.79%,能够更加快速准确并稳定地实现电机的非侵入式故障诊断。

  • 单位
    南开大学; 天津市光电子薄膜器件与技术重点实验室