摘要

图像融合是图像处理领域中比较重要的一门技术,传统的图像融合方法会降低图像融合质量。针对稀疏表示在图像融合中存在一定的缺陷,提出了一种基于卷积稀疏表示的图像融合方法。首先,对高频子带系数进行合理有效处理,利用相似度分析和视觉显著性进行融合。然后,将低频子带系数整体融合改进为使用Butworth低通滤波对低频子带进行分解,得到低频近似子带和强边缘子带。最后,再用改进的脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)对强边缘子带进行融合。实验结果表明,与其它传统的图像融合方法相比,信息熵(Information Entropy,IE)提高了将近3%,标准差(Standard Deviation,SD)提高了将近9%,空间频率(Space Frequency,SF)提升了将近30%,互信息(Mutual Information,MI)提升了将近25%。同时,时间效率也有了一定程度地提升。