摘要
自动癫痫脑电检测对癫痫的诊断具有重要意义,可以减轻监测长期脑电的工作强度。本文提出和探讨一种基于梯度boosting的长程脑电癫痫检测的新机器学习算法。该算法提取长程脑电的相对波动指数作为特征,采用梯度boosting算法训练分类器来识别发作和正常脑电。最后采用平滑和"collar"技术作为后处理进一步提高检测准确率。利用弗莱堡21位病人的脑电数据对该癫痫检测算法进行评估,实验表明,该算法的平均灵敏度为94.6%,误检率为0.18/h。
-
单位山东大学齐鲁医院; 山东大学苏州研究院; 山东大学