GA-BP算法预测滚动轴承退化趋势

作者:杨乐; 王景霖; 李胜男; 邵辰彤; 封锦琦
来源:测控技术, 2021, 40(11): 131-137.
DOI:10.19708/j.ckjs.2021.11.018

摘要

故障预测是PHM技术中的关键一环,它是以装备当前的运行状态为起点,结合设备的运行状态参数、历史数据,依据数学模型,对采集到的数据进行分析,结合装备自身运行规律,判断装备在未来任务时间段内是否会出现故障。在BP神经网络预测算法对滚动轴承退化趋势预测基础上,结合遗传算法对BP神经网络参数优化后进行预测,同时与粒子群算法优化BP网络参数后的预测结果比较,验证了所提方法的有效性。所提方法的研究思路是基于滚动轴承退化状态划分的退化趋势预测,根据滚动轴承全寿命周期振动数据特点,划分轴承退化状态,选取退化效果明显且退化时间较长的数据进行趋势外推。研究的创新点在于提取轴承时域、频域指标后,采用相关系数理论选取和轴承剩余寿命强相关的时域特征指标作为输入数据,频域特征指标作为输出数据,建立时域指标与频域指标的对应关系,通过预测频域特征值指标的变化趋势反映出轴承的退化趋势。