机器学习耦合受体模型揭示驱动因素对PM2.5的影响

作者:许博; 徐晗; 赵焕; 张忠诚; 高洁; 李岳; 冯银厂; 史国良*
来源:环境科学研究, 2022, 35(11): 2425-2434.
DOI:10.13198/j.issn.1001-6929.2022.07.06

摘要

PM2.5主要受排放源、大气化学、气象条件等驱动因素的非线性影响,了解驱动因素对PM2.5浓度的影响十分重要.本研究基于南开大学大气环境综合观测超级站的逐时在线观测数据,耦合机器学习方法和受体模型,揭示了驱动因素的重要性以及对PM2.5浓度的影响.结果表明:(1) 2018年11月—2020年10月观测地点的PM2.5浓度范围为3.21~291.80μg/m3,采暖季PM2.5浓度和化学组分均高于非采暖季.(2)使用受体模型解析PM2.5的来源及其贡献,发现观测期间二次源的贡献率(44.7%)最高,其他依次为燃煤源(23.6%)、机动车排放源(11.0%)、扬尘源(9.9%)、生物质燃烧源(7.2%),工业源的贡献率(3.6%)最小.(3)利用随机森林-SHAP模型量化排放源、大气氧化能力、气象条件等驱动因素对PM2.5浓度的影响,发现观测期间排放源对PM2.5浓度的影响程度为54.3%,高于其他驱动因素;气象条件对PM2.5浓度的影响程度次之,为32.4%;大气氧化能力对PM2.5浓度的影响程度相对较低,为13.3%.在采暖季和非采暖季,各驱动因素对PM2.5浓度的重要性在排序上没有变化,然而驱动因素对PM2.5浓度的影响程度有所不同.采暖季排放源对PM2.5浓度的影响程度高于非采暖季,采暖季大气压对PM2.5浓度的影响程度低于非采暖季.研究显示,排放源对PM2.5的影响相对较大,气象条件和大气氧化能力对PM2.5浓度的影响也不容忽视.

全文